Generative Adversarial Networks

下面是生成对抗网络在图像处理方面的部分代码

Valse 2017, 生成对抗网络(GAN)研究年度进展评述
http://news.ifeng.com/a/20170501/51029711_0.shtml


2017 ARXIV Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
https://junyanz.github.io/CycleGAN/


2017 CVPR Image-to-Image Translation with Conditional Adversarial Nets
https://phillipi.github.io/pix2pix/
https://people.eecs.berkeley.edu/~efros/


2016 ArXiv Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
https://coxlab.github.io/prednet/


2016 ArXiv Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
https://github.com/soumith/dcgan.torch
https://github.com/Newmu/dcgan_code
https://github.com/saikatbsk/ImageCompletion-DCGAN/blob/master/Readme.md


2016 NIPS Semantic Segmentation using Adversarial Networks
https://github.com/bityangke/Semantic-Segmentation-using-Adversarial-Networks


2016 ICLR Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
https://github.com/soumith/dcgan.torch


2016 ECCV Generative Visual Manipulation on the Natural Image Manifold
https://github.com/junyanz/iGAN


2014 NIPS Generative Adversarial Networks
https://github.com/goodfeli/adversarial

 

4 thoughts on “Generative Adversarial Networks

  1. Pingback: zd porn
  2. Pingback: kari satilir
  3. Pingback: DMPK Services

发表评论